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By viscous sintering is meant the process in which a granular com- 
pact is heated to a temperature at which the viscosity of the material 
under consideration becomes low enough for surface tension to cause 
the powder particles to deform and coalesce. For the sake of simplicity 
this process is modeled in a two-dimensional space. The governing 
(Stokes) equations describe the deformation of a two-dimensional 
viscous liquid region under the influence of the curvature of the outer 
boundary. However, some extra conditions are needed to ensure that 
these equations can be solved uniquely. A boundary element method is 
applied to solve the equations for an arbitrarily initial-shaped fluid 
region. The numerical problems that can arise in computing the 
curvature, in particular when this is varying rapidly, are discussed. A 
number of numerical examples are shown for simply connected 
regions which transform themselves into circles as time increases. 
0 1992 Academic Press. Inc. 

1. INTRODUCTION 

When powders of metals, ionic crystals, or glasses are 
heated to temperatures near their melting points, the pow- 
der particles weld together and the density of the compact 
changes: this process is known as sintering. Sintering is a 
process which reduces the total surface of the powder par- 
ticles. The driving force arises from the excess free energy of 
the surface of the powder over that of the solid material. 

There are a number of physical principles which can be 
held responsible for the sintering phenomena; for a review 
see, for example, Exner [4]. We are mainly interested in the 
case of sintering when the material transport can be 
modeled as a viscous Newtonian volume flow, driven solely 
by surface tension (viscous sintering). This gives us a simple 
model of what is known as the sol-gel technique, which can, 
for example, be used to produce high-quality glasses. In this 
technique a glassy aerogel is heated to a temperature at 
which the viscosity of the glass becomes low enough for sur- 
face tension acting on the interior surface of the gel to cause 
the gel to collapse into a dense homogeneous material. 

* Other address: Philips Research Laboratories, P.O. Box 80.000, 5600 
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It is impossible to give a deterministic description of the 
flow within such a complex sintering geometry as an 
aerogel. We shall therefore investigate simple geometries; 
to start with in 2D only, aiming to eventually derive 
constitutive laws of the effects obtained. 

A classical problem in sintering literature is the two- 
dimensional initial-stage unit model, the sintering of two 
cylinders, which has been solved exactly by Hopper [S, 61. 
The sintering of an infinite line of cylinders was simulated 
numerically by Ross et al. [ 151. They were also the first to 
perform the simulation using a finite element method 
(FEM). Jagota and Dawson [7, S] have recently reported 
some results obtained with the FEM for the sintering of two 
spheres and an infinite line of spheres (i.e., 3-dimensional 
axisymmetric problems). Recently, Kuiken [9] applied a 
boundary element method (BEM) to solve viscous sintering 
problems for bodies with rather smooth boundaries. A 
review of the available numerical techniques for such 
creeping Stokes flow, has recently been given by 
Weinbaum et al. [ 161. 

In this paper we present another way of implementing a 
BEM for viscous sintering problems. Our aim is to develop 
a code which tells us how a fluid with an arbitrarily shaped 
region transforms itself through time, driven only by the 
surface tension. To compute the shape at different time 
steps, we only need to know the velocity of the outer 
boundary points. This gives us the motivation to use a BEM 
rather than a FEM. Another reason for using a BEM is the 
fact that remeshing a boundary curve is much easier than 
remeshing a full 2-dimensional grid, as is done in a FEM. 

First, we shall rewrite the viscous sintering problem, 
which is described by a set of partial differential equations, 
into a set of integral equations. Then we shall show analyti- 
cally that the integral equations derived for an arbitrary 
region still have three degrees of freedom; so three extra 
conditions must be given to ensure that the problem can be 
solved uniquely. These integral equations are solved by a 
BEM, as proposed by Brebbia [2]. Further, we shall 
discuss the numerical problems that arise in computing 
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the curvature, in particular when this is varying rapidly. 
Finally, we shall give a number of numerical examples to 
demonstrate the usefulness of our method. 

2. PROBLEM FORMULATION 

In this paper we assume that the viscous sintering 
problem can be modeled by a viscous incompressible 
Newtonian fluid flow. This flow is characterized by the 
dynamic viscosity II, the surface tension y, and the magni- 
tude of the body (characterized by its cross-section, e.g., 
length 1). We denote the velocity of the fluid with v and the 
pressure with p. The region of flow is defined by a closed 
curve r and the interior area denoted by a. 

For a viscous sintering problem the creeping flow Stokes 
equations hold (Kuiken [9]): 

ye Av-gradp=O 

div v = 0. 
(2.1) 

We define a characteristic velocity vc, a characteristic 
pressure pc, and a characteristic time t, by: 

UC = r/r, PC = r/L 1, = WY. (2.2) 

We use these characteristic parameters to obtain a dimen- 
sionless formulation for (2.1) 

At-gradd=O 

div i = 0. 
(2.3) 

We shall omit the - further on when we mean the dimen- 
sionless velocity (v) or the dimensionless pressure (p). 

On the boundary the normal component of the stress 
vector is proportional to the local curvature K of f. This 
condition can be expressed as 

F-n = (div n)n = m, (2.4) 

where n is the outward unit normal vector of r and Y is the 
stress tensor. 

The model described above does not ensure a unique 
solution. A superimposition of an arbitrary rigid-body 
translation or an arbitrary rigid-body rotation upon any 
particular solution will not alter the stress field at the 
boundary r. Thus we need to add three extra conditions to 
ensure that the velocity field obtained is unique. These 
conditions will be derived in Section 3.1. 

If we were to solve the problem defined above for a fixed 
boundary r we would find, in general, a non-zero llow field 
on P, this would mean an inflow through one part of the 

boundary and an outflow elsewhere; this is unphysical 
because r is a material boundary. Hence r is moving; its 
displacement can be found from the velocity field just 
derived 

dx 
x=v(x) (XEZ-) (2.5) 

subject to an initial boundary r, at t = t,. 
We note that the driving force of this problem is 

the curvature IC along the boundary curve ZY When the 
curvature is constant along r, i.e., when r is a circle, the 
normal component of the stress tensor is constant. Since we 
assume no arbitrary rigid-body translation or rotation, the 
velocity field of the boundary r will be equal to zero. Thus 
our initial boundary r, will be transformed into a circle 
when t -+ CC (physically: the minimal surface energy of the 
body). 

3. BOUNDARY INTEGRAL FORMULATION 

We have seen that the problem is to solve (2.3), subject to 
the conditions (2.4k(2.5) and three other conditions still 
to be derived, in order to obtain the velocity field of the 
boundary as a function of time. 

The problem is ideally suited to be solved by a BEM 
(Brebbia [2]). There we are only interested in the move- 
ment of the total region; thus only the velocity at the 
boundary is required. Hence, we shall represent the solution 
in terms of boundary distributions of the single- and double- 
layer potentials for the Stokes equation. In this form, we can 
directly calculate the shape and motion of our viscous body. 
From this we can derive the extra conditions, to ensure that 
the problem has a unique solution. 

3.1. Extra Conditions to Make the Problem Solvable 

We introduce the fundamental solution uk(x, y), qk(x, y) 
of the Stokes equations, i.e., the problem 

We shall first derive the boundary integral formulation. 
Many authors attribute the analysis and the integral equa- 
tion that follows to Ladyzhenskaya [ 1 l] in 1963, but 
actually it was Lorentz [ 121 who derived this formulation, 
in essence, back in 1896. 

Auk(x, y) - grad qk(x, y) = 6(x - y) ek 

div uk = 0. 
(3.1) 

where k = 1, 2. Here ek = (6,,, 6,k), with dVas the Kronecker 
delta, and 6(x - y) is the Dirac delta function. Furthermore, 
all differentiations are carried out with respect to the 
variable x; the applied unit force is concentrated at the 
point y. 
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This problem can be solved uniquely using the require- 
ment 

$(X> Y)=qlog lx-YI), 

qk(x, Y) = o(l), 1x1 + 0-3. 

Then, we obtain 

1 -$og- 
IX-Y1 

q&(x, y) = - xk - Yk 
27l Ix-y/*’ 

The functions uk and qk are also the solutions to the adjoint 
system (i.e., differentiation is carried out with respect to y) 

A,,uk(x, Y) + grad, qk(x, y) = 6(x-y) ek 

div, uk = 0. 
(3.3) 

Since we are considering a Newtonian fluid flow, the stress 
tensor F(q, u) can be expressed as 

zk(q,u)= -6,y+(2+$$. (3.4) 

When we integrate the identity 

(3.5) 

over Q, we obtain 

+ jr %k(q, u) u?k dT. (3.6) 

By interchanging ui and oi in Eq. (3.6) and introducing an 
arbitrary smooth function p together with q, we obtain from 
Eq. (3.6) 

= 
s 

[zJ(p, V) uinJ - .Fb(q, U) Uinj] dr, (3.7) 
I- 

where 

(3.8) 

Note that Eq. (3.6) and (3.7) are the so-called Green’s 
formulae corresponding to the Stokes problem. When we 
replace u and q with the fundamental singular solution 
uk(x, y), qk(x, y) and note that these singular solutions, as a 
function of y, satisfy the adjoint system, we obtain 

- 
5 

zj(p, v) ufnj dI’> 
I- 

(3.9) 

for any x E a. By ( )-” we mean that the differentiation is 
carried out with respect to y. From Eq. (3.2) we find 

F$(qk, Uk).” = - cxi- vh)$x-mY;$~k - yk), t3.10j 

and from Eq. (2.4) it follows that 

ZJp, v) nj = K(Y) ni, (3.11) 

where K(Y) is the curvature of the boundary r at the point 
y E r. 

In what follows we shall use Greek letters i;, q, to denote 
points on the boundary ZY The boundary integrals in (3.9) 
are called hydrodynamical potentials of single- and double- 
layers (Ladyzhenskaya [ 111). Following [ 111 we define the 
potential of a single layer with density $(q) as 

vi(X, $‘I= -J Uf(X, ?) l//k(r) drv. (3.12) 
I- 

By the potential of a double layer with density cp(q) we 
mean 

wk(x, d=s, y$(qkt ~"1~ cpdvl) nit?) dr, 

where 

= Kkj(x, V) cP,(Vl) dT,> 

K,(~ 
> 

From Eq. (3.9) we now obtain for x E Q, 

v&) = wk(x, v) + vk(x, Kn). 

(3.13) 

(3.14) 

(3.15) 
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Assuming the boundary r is “smooth,” it can be seen, see So q”(l) is actually a solution to the system (3.17). Further- 
[ 111, that for a point x = 4 on r the velocity vector v(t) is more, we must show that any other solution cp to Eq. (3.17) 
given by depends linearly on cpk. This part of the proof is rather 

technical and can be found in Ladyzhenskaya [ 111, even 
$uk(t) = wk(& v) + vk(t, Km). (3.16) for the 3D case; for the 2D problem this proof is a 

straightforward analogue of [ 111. 1 

The factor 4 is caused by the “jump” of the double-layer 
potential I+‘,( t, v). This latter equation will be used to solve 
the viscous sintering problem. 

Before doing this we shall investigate the number of 
degrees of freedom which Eq. (3.16) still has. As mentioned 
in Section 2, thus must be three. To derive this we consider 
both v1 and v2 to be solutions to Eq. (3.16). For the 
difference cp = v’ - v2 we can derive the following equation: 

For the solution to Eq. (3.17) we now propose the following 
lemma: 

A physical interpretation of this lemma can be given as 
follows: (p’(t) and (~~(5) describe a rigid-body translation of 
Q in the e’- and e2-directions respectively; (p3(t) gives the 
conservation of angular momentum when x is considered 
over the total body. Thus when we want to solve the viscous 
sintering problem, we must include three extra conditions in 
our problem to ensure that the solution is unique. 

From Eq. (3.19) it follows that cpk(x) is also a solution 
when x E Q. Thus we can represent the general velocity 
solution i; of our viscous sintering problem by 

v,(x)=u,(x)+a,x,+a, 

u2(x)=u~(x)--c(1x,+cI3, 
(3.22) 

LEMMA 1. Equation (3.17) possesses three linearly inde- 
pendent solutions cpk with where c(~, a2, and CAKE aB. We want to fix these three 

numbers. We can achieve this as follows: 
q”(x) = (d,,, d,,) = ek, k = 1, 2 For the rotation-operator on V in 2D, we have 

(P3(x) = (x2, -x1). 

roti(x)=$-%-2z,, 
1 au2 

XEQ. (3.23) 

Proof: This lemma can be proven in the following way. 
First we show that these cpk(x) are solutions to Eq. (3.17). 
Consider therefore any of the vectors cpk(x) and a smooth When we assume no internal rotation of the fluid flow then 

function pk, which will satisfy the homogeneous system 
rotv(x)=O, XEQ. (3.24) 

Acpk -grad pk = 0 

div cpk = 0; (3.18) So also rot v = 0, thus ctr = 0. When we integrate Eq. (3.24) 
over Q and use Stokes’s theorem, we find 

i.e., for example, take p”(x) s 0. 
Furthermore, we note that from Eq. (3.4) it follows that 
Kj(pk, cp”) = 0. We now derive from Eq. (3.9): 

I (v, z) dT= 0, (3.25) 
I- 

c&x)= W;(x, cpk), XEQ. (3.19) where z is the tangential vector of the boundary r. 
To eliminate the translation component, we formulate the 

By letting x approach 5 E r it can be derived that 
problem to be stationary at a (reference) point in the fluid: 

(Ladyzhenskaya [ 111) 
x’. The most natural choice for this reference point is the 
centre of mass, the point where the gravity forces grips the 

wcdP’)=$P:(s)+j fqbl)cpjk(W~~. 

body; thus 
(3.20) 

I- v(x’) = 0. (3.26) 

From Eq. (3.19) we thus obtain for x + 5 
3.2. Boundary Problem Formulation 

(3.21) As mentioned before, the viscous sintering problem is 
governed by the Eqs. (3.15) and (3.16). Recall that for an 
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arbitrary point x of the body Q, we can express the velocity Furthermore, we want our viscous body to be rotation-free 
uk, using indicial notation, in the general 2D form, cf. (3.25), so 

c v,+ (xi-ri)(xj--j)(xI,--ylk) v-n-dr 

kl J I 7-c Ix-d4 
II 7 

I- 
I (v, t) dT=O. (3.34 
I- 

Thus, to determine the unknown velocity at the boundar) 
we apply the general solution (3.33) at the boundary, i.e. 

+ Cxi - ?i)txk - Vk) 

x = 5 E r, and condition (3.24), to ensure that the solutior 

IX-VIZ 1 Zj(p, VI n, dT,> (3.27) is unique. 

where 

when x ~52; 
cii= 

6, 
$3, when x E r and r is “smooth”; 

lcr, (cf. (3.11)) is written as 

4. NUMERICAL SOLUTION 

4.1. The Boundary Element Method 

We shall use the BEM to solve the integral equatiom 
(3.33)-(3.34). For this, the boundary has to be discretized 
into a sequence of elements where the velocity and the sur- 
face tension are written in terms of their values at a sequence 
of nodal points. From the discretized form of (3.33) for 

b;=Zj(p,v)njIr=K~,. (3.28) 
every nodal point and the extra condition (3.34), we obtain 
a system of (2N+ 1) linear algebraic equations with 2Ri 
unknowns. This system gives a unique approximate 

From (3.27) we then find the matrix equation related to the solution of the velocity field, and so from Eq. (2.5) a new 
point x, boundary can be obtained. 

After dividing the boundary r into N elements, we define 

%?v(x)+/ 9vdl.;=/ abdI-,, 
functions v and b which apply at a typical element ‘7,” 

(3.29) 
I- F 

v=@vj 
(4.1) 

where %?, 2, and % are 2 x 2 matrices with coefficients cii, qii, 
and uii, respectively, such that 

b = @b,‘, 

where uJ and bJ are the element nodal velocity and surface 
tension. The interpolation function @ is a 2 x 2M matrix of 
shape functions: 

1 @= 91 0 42 0 ... 4A4 0 
uB=G 1 

1 rirj 
6,logx+jp , 1 (3.31) [ 0 4, 0 42 ... 0 4M 1 = [CD, cD2...aM]. (4.2) 

whererj=xi-q,and R=Jm= Ix-ql. 
We also have to account for the fact that the velocity of These funcions are the standard finite-element-type func- 

our chosen reference point x’ in Sz is zero, to ensure that tions (Brebbia [ 1 ] ). We substitute the functions (4.1) and 
Eq. (3.29) has a unique solution, (4.2) into Eq. (3.33) and discretize the boundary. We derive 

the following equation for an arbitrary nodal point i: 

5 2’v dl-,, = 
s 

Wb dl-,, (3.32) 
I- r 

where 2’ = Z?(xr, Y,I) and u%I’ = %(xr, q). 
From Eqs. (3.29) and (3.32) we obtain 

Uv(x)+j- 
r 

(9-2?‘)vdl-V=j- (%-W)bdT,. (3.33) Note that V’ = 0.5 for a “smooth” boundary; i.e., constant 
r elements: v, b are assumed to be constant over each element. 
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Otherwise, for higher-order elements %? will be a 2 x 2 
matrix. 

The following types of integrals have to be evaluated 
element-wise: 

Hence at a particular point, i, say, we can write for Eq. (4.3): 

,=I 
N 

= c (G”- G;) b-j. 
/=I 

If we now let i vary from 1 to N and set 

i 
@J, 

H"= AU+~', 
i#j 
i=j, 

(4.5) 

(4.6) 

then we obtain from (4.5) 

c (H”-H;)v/= 5 (G”- G;) b’. (4.7) 
/=I j= 1 

As was pointed out, the diagonal submatrices H” include 
terms in fig and %?. Difficulties appear when trying to com- 
pute these terms explicitly; particularly at corners where the 
fundamental solution has a singularity. Assume the whole 
body has a velocity v in the direction of one of the Cartesian 
coordinates and note that the curvature vector b does not 
change. Then we can obtain the following equation: 

Xe = 0 with e = (1, . . . . 1) or: 

H”= _ ; H’i. 
j= I 
J#i 

(4.8) 

4.2. The Computation of the Curvature 

As mentioned before, the driving force of the sintering 
problem is a tension that depends on the surface energy of 
the boundary and its geometry, i.e., (2.4). A local method is 
used to determine the curvature K at the nodal points of the 
boundary. This curvature is found by fitting a quadratic 
polynomial at the nodal point, say q2, and its two 
neighbours g’ and q3. For the quadratic polynomial we can 
write 

9(s) = v%(s) + u242(s) + 13953(s), (4.9) 

where di(.s) = $.s(,s - 1); d2(s) = 1 - s2; &(s) = $r(s + 1). 

For the curvature at q2 = 4 (s = 0), we can derive 

K(r2) = (r2)s (rll)ss- (Vl).Y (v2)ss 

mhM2 + (h2L)2)3’2 

4(rl: - s:,(vf -2rl: + yl3 
~i(?:-Ili)2+(4:-~:)?)3/? 

~(+v:)(v:-~v:+v:) 
- ((rl:-yI:)2+ h-r:)‘)“” 
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(4.10) 

Furthermore, we make a linear tit through these nodal 
curvatures to determine the curvature at any point of the 
element, especially the integration points. 

When computing the curvature, the following problems 
occur. In a point where a cusp arises, the curvature becomes 
unbounded. Thus the approximate curvature in such a 
point can have large errors. Furthermore, when we reline 
too much in the neighbourhood of such a point, we make 
large errors when computing the curvature using the above 
formula. This is because both the numerator and the 
denominator in (4.10) approach zero. This is a serious 
problem, which we shall illustrate by an example. 

Assume that the spatial discretization error is smaller 
than the time discretization error. This is justified by the fact 
that we use a simple forward Euler scheme for computing 
the moving boundary (see Section 4.3), so the global time 
discretization error is @(At). We cannot make the time step 
At very small, because then the total computing time will 
become prohibitively large. Thus we may say that the 
computed boundary deviates @(At) from the exact curve. 

When we approximate the curvature at points where the 
mesh is line, we lose some accuracy because some points are 
necessarily very close to each other. The quotient at the 
right-hand side of Eq. (4.10) will then be of the order At over 
order At. Hence the computed curvature can deviate con- 
siderably from the exact curvature and soon oscillations will 
develop. These oscillations result from the following feed- 
back cycle: (1) small errors in the approximate collocation 
points produce (2) local variations in the computed 
velocities of the collocation points, causing (3) uneven 
advancement of these points which yields (4) larger errors in 
the approximation. 

This process can lead to instabilities and wrong curves 

TABLE I 

i ‘II vi h.(6) 

1 0.24576958 O.OOOOOOOO 121.74770396 
2 0.24635812 0.003 10939 96.11441305 
3 0.24813714 0.00629589 54.8 1639820 
4 0.25114742 0.00964125 28.04820956 
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and even a complete breakdown of the algorithm. To be 
more specific, consider a situation of sintering spheres in 
2D, fairly shortly after they have made contact (so there still 
is an almost cusp-like part of the boundary). Let (vi,, vi) be 
some points at the boundary curve, rc(q’) the approximate 
curvature, and At = 0.001. We then obtain numerical results 
as shown in Table I. For the approximation of the 
curvature, e.g., in q*, we must compute 

PZT - ye: = 0.00236756 2 digits lost and of O(At); 

qi - q: = 0.00629589 exact; 

I?: - 2r]: + r: = 0.00119048 2 digits lost and of O(At); 

y~i-2~~+~~=0.00007711 2digitslostandofLo(At). 

This clearly demonstrates that the approximation for ~~(11~) 
as found from (4.10) may be O(At) over O(At); nevertheless 
it often works satisfactorily. We plan to investigate better 
time-stepping schemes in the future. 

4.3. The Linear Element Solution 

We consider a linear variation of v and b over an element, 
the nodal points at the end. As we saw in (4.1), the values 
of v and b at any point of the element can be expressed in 
terms of their nodal values and two linear interpolation 
functions 4i and c$*, which are given in the form of the basis- 
free coordinate s as 

&=$(1-s) 

b*=$(l +s). 
(4.11) 

Furthermore, the boundary can be expressed in terms of 
functions of the same interpolations: 

= ;(ff’- #)s + i(q’ + q’). (4.12) 

Here r~l, q2 are the coordinates of the nodal points of the 
element under consideration. 

In a way similar to that described in Section 4.1, we derive 
Eq. (4.7) for the discretized form of (3.33). The submatrices 
found in (4.7), i.e., Z?, Hj, G”, and G! are now 2 x 4 
matrices. The integrals are then of a type as in (4.4). From 
(4.12) we find that these integrals are of the following type: 

where lJ( is the Jacobian; i.e., 

(JI = J(arl,/as)’ + (aV,/as)* = ; I$ - Yfll. (4.14) 

For the outward normal n we find 

1 
“=jJ 

-a2 

( > a, ’ 
(4.15) 

where a,= $(qt - 7;). 
Further analysis of (4.13) gives the following eight 

integrals which are to be computed for each element with 
index j, say, with nodal points q’ and u*, related to the 
node 5’: 

Zp(~)=j;~ (1+&1 

Z;(y)= j', (1 +ys)$ds 

zy(y)=j;I (1 +?s)Fds 

Z,b(y,=j~, (1 +w)log IR21 ds 

Zf’(y)=jIl (1 +ys)$,ds 

Z;(y)=jll (1 +ps)$ds 

Zf(y)=j;l (l+ys)%ds 

Zf(y)=j’ (1 +ys)$ds, 
-I 

where y = +_ 1 and 

(4.16) 

rj=ajs+bj withbj=$(25j-vf--j?). 

We note that 

ZP(y)+Z;(y)=j;, (1 +ys)ds=2. (4.17) 

Thus in total we need to evaluate 14 integrals for each 
element “j” and nodal point 5’. 

From the integrals Z,?, Z1? we derive the 2 x 4 submatrices 
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G” and fiU, respectively. The integrals of (4.16) are related Z~(Y) = 0 for j = 1, . . . . 4 
to these submatrices as 

24 a2 ZY(r)=T, z;(y)+, If(y)=- R ’ 

Zy(1’)=2log(Z?)+2s’ (l+ys)log(sfl)ds 
-I 

(4.19) 

i 

21og(4R) - 2 if y= 1, [‘= ‘1’; 
y= -1, p=g; 

= 

21og(4i?) - 6 if y= 1, (‘= $; 

y= -1, [;=ql, 

(G922 = j’, 4,~ IJI ds where i? = a: + a:. 
Furthermore, note that b is a known vector, thus Gob’ is 

=g ZE(-l)-;zy(-l) 
[ 1 

a (sub)vector which we denote by Fj. For F-’ we find: 

(4.18) F’: = i~j((G*~)~~ n, + (Gii)k2 nz) 

+ d+ 1((Gii)k3 n, + (‘& n2). i4.20) 

=& [azZr(-1)-a,Zy(-l)] As mentioned before, for every nodal point 5’ and for each 
element we must compute the integrals of (4.16), to obtain 
the system matrix &? and the right-hand vector F. By Y? we 
mean the 2N x 2N matrix derived from the submatrices Hv. 

=& [azZ~(-l)-a,Zf(-1)]=(Hii)2, 

(Ho)22 = j’ hqzz I4 ds 
-1 

The 2 x 2 diagonal blocks of 2 are computed using the 
rigid-body considerations as derived before, i.e., (4.8). To 
obtain the discretized form of (4.7), we also need to compute 
(once) the integrals of (4.16) over every element when 
t = x EQ is the reference point xr. So we obtain the sub- 
matrices G; and H,‘. Again, we can replace the submatrix G{ 
by the subvector F;I. In this way, we obtain a 2 x 2N matrix 

=& [a,Z,H(-l)-a,Zy(-l)]. H, and a 2-vector Fr. 
To X and F we apply the following operations for 

obtaining the system of (3.33): 

A similar expression can be found for the elements ( GV), 2 + k 1 
and (fW~.2+k when the interpolation function is ~$*,‘i.e., ~~=~~~,-Ae;, 
wheny= 1. (4.21) 

The integrals of (4.16) are computed using a four-point F,=F,p,-- D; for k=O, . . . . N- 1, 

Gauss quadrature formula. However, when 5’ = ‘I’ or 
ti = q*, i.e., the nodal point ti lies in the element considered, where 
the integrals have a singularity. Because of this singularity, 
the four-point Gauss formula used for the approximation of X1=X and Fp,=F; 
these integrals will not give satisfactory results. The 
approximations can involve large errors in the submatrices 
G” and Hii. We therefore compute these integrals analyti- 

0 5: 2k 

tally. JJ%= H, f 

[_I 

2 

This can be done easily for the integrals Zy and I,!. Note 0 5 2(N-k-1) 

that there rj=ai(l+s) or ri=a,(l-s) when <=r~’ or 
5 = q2, respectively; hence we obtain 2N 
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and 

1 

Denote the resulting matrix ZNP r by x and the resulting 
vector F,_ I by F,. The system 

Zrv = F, (4.22) 

exactly covers Eq. (4.7). 
The matrix ,rl: has rank 2N - 1, thus (4.22) does not have 

a unique solution. To obtain a system with full column 
rank, we must include the extra condition that our body is 
rotation-free, i.e., Eq. (3.34). The integrals involved are easy 
to compute, in a way similar to that above. This condition 
gives an extra row for the matrix Xr, so the new e is a 
(2N + 1) x 2N matrix. 

This system (4.22) is solved by Gaussian elimination. The 
LU-decomposition of rt: is performed with partial pivoting. 
z has full column rank, so the last row of the upper 
triangular matrix @ can be ignored for the backward sub- 
stitution, and the system can be solved uniquely. However, 
when the reference point is not the centre of mass, the 
problem to solve is really a least-squares problem, which is 
solved using a QU-decomposition. 

The solution v is the approximate velocity field at time 
t = tk in the nodal boundary points 5’. The displacement of 
the boundary at time t = t, + , = t, + At can be obtained by 
discretization of (2.5). Here we use a simple forward Euler 
discretization scheme, i.e., 

e(fk+ ,I = C(fk) + At v(ti(f,4)). (4.23) 

By starting the numerical process at t = t, = 0, we set At 
equal to At,,, . For t > 0 we obtain the At from the equation 

At = min(At,,,, max(At,,,, At*)), (4.24) 

where At* is defined as 

At* = C J 
At,,, 

maxE, lv(5’(tk+ 1)) - v(5i(tk))l (4.25) 

and C is a constant. 

4.4. Automatic Mesh Selection 

When we approximate the boundary curve r with a 
polygon, an error is made. We need an easy criterion to 

monitor this error, so that we can insert or remove colloca- 
tion points when necessary. A reasonable criterion would 
seem to be that the straight line between two contiguom 
collocation points should not deviate too much, in a relative 
sense, from that part of r which lies between those points. 

We denote the maximum deviation of element j and the 
boundary by h,, and the length of the element j by 8,. Then 
hj/6, must be bounded above by a certain threshold value E. 
i.e., 

h, < ~6~. (4.26) 

It is too expensive to compute this h, for every element 
exactly, and after all we do not need to know this h, exactly. 
An approximation of hi is enough, as this gives an indication 
of where the polygon does not approximate the boundary 
well, and thus some action needs to be taken. 

Suppose that n1 and q2 are two successive collocation 
points with curvature K(v’) and IC(~~), respectively, as 
derived in Section 4.2. An arc of the circle through ‘I’ and q2 
can be defined uniquely when the curvature, say K’, of this 
circle is given. Note that the radius r of this circle can found 
with the equation r = l/l ~‘1. The maximum deviation of this 
circle with the straight line through q1 and n2 can then easily 
be found, 

hJ= /K(vi)l -L (1 -Jl - $?f(Ic(q’))2), i= 1, 2. (4.27) 

Note that when K(v]‘) + 0, it can be seen that h: + 0, i.e., the 
curve is a straight line. When K(v~) > 2/d,, no solution can 
be found because the length of the element is too large to 
define an arc of the circle through q1 and 11’. 

Since the boundary curve r is sufficiently “smooth” and 
from the curvature over an element is approximated by a 
linear function, the maximum deviation hi of a straight line 
through n1 and Y/~ is bounded by 
Eq. (4.27). Thus, 

hi < max(hj, hf) 

and so our criterion will be 

maxfhj, hj) < dj~. 

4.5. The Quadratic Element Solution 

the maximum of 

(4.28) 

(4.29) 

We consider a quadratic variation of v and b over an 
element. Here three successive collocation points define the 
element. As mentioned in (4.1), the values of v and b at any 
point of the element can be expressed in terms of their nodal 
values and three quadratic interpolation functions (6,) #*, 
and d,, e.g., Section 4.2. 
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In a way similar to that described in Section 4.3, we find 
the discretized form. Note that the submatrices are now 
2 x 6 matrices. We find for the integrals which are to be 
considered, that they are of the following type: 

where k = 1, . . . . 3 and Z, m = 1,2. Here IJI is the Jacobian, 
i.e., 

IJI =J(2a,s+b,)z+(2a*s+b2)2, (4.31) 

where 

a,= -#-2~‘+r/‘) 

hi= - ;(I+$). 

For the outward normal n we find 

(4.32) 

The integrals which are to be computed for each element 
with index j, say, with nodal points vi, q2, and q3, related to 
the node li are 

(4.33) 

where 

k = 1, . . . . 3andl,m=l,2; 

rj = ajs2 + b,s + cj ; 

c,=+((;-$); 

Ii/(s) = (rlnl + r2n2) IJI 
= (a, b, - a,b,) s2 + 2(a, c2 - a2c1)s 

+(hc2--bzcl). 

The integrals of (4.33) are computed using a four-point 
Gauss quadrature formula. 

However, when ti = ql, q2, or q3, i.e., the nodal point ti 
lies in the element considered, these integrals have a 
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singularity. This singularity can easily be removed after 
some analytical manipulation. The integrals then become 

+ j’ i,[ 
1 

b,log;+!$ IJI ds - - ] ] (4.34) 

(ff’)2,~2+,,.,=(a1b2;a2b1) j;,&$& 

where k = 1, . . . . 3andI,m=1,2and 

when t=s’ 
when 4=r2 
when <=r3 

I:= ’ 2&(2t- 1) l.Z(2t- l)] log 5 dt 
s 0 0 

and y = 1,t = ?/’ 

I;= 

and y=o, t=rf2 

Zk” = s ’ 2&( 1 - 2t) IJ( 1 - 2t)l log 0 f dt 
0 

and y= 1, t=$. 

The integrals in (4.34) are not singular, therefore they will 
be computed using the four-point Gaussian quadrature for- 
mula. The integrals I,” have a logarithmic singularity. The 
singular integrals will be computed using a logarithmic 
Gaussian quadrature formula to obtain a good approxima- 
tion. 

5. NUMERICAL RESULTS AND 
DISCUSSION 

In this section we show a number of results for some 
simply connected surfaces, obtained by applying the 
algorithm described in Section 4. Note that every simply 
connected viscous fluid region Q transforms itself into a 
circle when t is going to infinity. Thus a circle must be the 
result of the simulations considered. Also, the fluid is 
assumed to be incompressible. In 2D this means that the 
total surface of the moving fluid region must be constant in 
time. This gives us a nice criterion to monitor the accuracy 
of our method. 
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TABLE II 

The Collocation Points of the First Quadrant of Fig. 1 

t = 0.0 t = 1.0’ t = 1.0 t = 1.0 
(Linear) (Quadratic) 

i xi YS xi Yt & Y3 x, Yl 

1 0.00000 1.00000 0.00000 1.09340 0.00000 1.09198 0.00000 1.09191 
2 0.16690 1.00000 0.15628 1.08551 0.15683 1.08425 0.15672 1.08419 
3 0.31187 0.99999 0.29053 1.06543 0.29150 1.06450 0.29130 1.06442 
4 0.43814 0.99983 0.40503 1.03713 0.40640 1.03661 0.40611 1.03649 
5 0.54956 0.99896 0.50317 1.00298 0.50494 1.00287 0.50456 1.00271 
6 0.64666 0.99613 0.58573 0.96550 0.58786 0.96573 0.58741 0.96553 
7 0.72904 0.98966 0.65318 0.92747 0.65557 0.92795 0.65509 0.92771 
8 0.79517 0.97847 0.70570 0.89216 0.70814 0.89286 0.70764 0.89259 
9 0.84613 0.96262 0.74576 0.86118 0.74814 0.86205 0.74768 0.86174 
10 0.88350 0.94365 0.77601 0.83506 0.77825 0.83609 0.77784 0.83573 
11 0.91239 0.92146 0.80129 0.81115 0.80340 0.81234 0.80304 0.81192 
12 0.93751 0.89268 0.82676 0.78490 0.82866 0.78631 0.82837 0.78582 
13 0.96009 0.85215 0.85602 0.75161 0.85773 0.75325 0.85749 0.75269 
14 0.97809 0.79675 0.89004 0.70793 0.89155 0.70970 0.89136 0.70909 
15 0.99006 0.72552 0.92794 0.65128 0.92927 0.65302 0.92909 0.65244 
16 0.99648 0.63905 0.96738 0.58023 0.96850 0.58174 0.96833 0.58120 
17 0.99910 0.53967 1.00500 0.49535 1.00583 0.49655 1.00569 0.49609 
18 0.99986 0.42793 1.03840 0.39651 1.03889 0.39740 1.03877 0.39705 
19 0.99999 0.30312 1.06557 0.28295 1.06572 0.28358 1.06562 0.28334 
20 1.00000 0.16245 1.08448 0.15237 1.08438 0.15274 1.08428 0.15260 
21 1.00000 0.00000 1.09195 0.00000 1.09171 0.00000 1.09161 0.00000 

Note. These points, derived with both linear and quadratic elements are compared with the 
results* obtained by one of us [lo]. As can be seen, the deviation between the points is of order 
Llt=0.01. 

In the following examples it was observed that the relative 
change in the total surface was less than 0.2% when the 
curvature of the curves was varying moderately, and 1% 
when the curvature was varying more wildly during the 
simulation. 

For the first example both linear and quadratic elements 
have been used, the other examples have been simulated 

1 
I 
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ot 

I I 
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FIG. 1. The transformation of a square with the corners rounded-08 
into a circle. The various boundary curves refer to values of time 

with linear elements. All computations have been done on a 
SUN spare 1 + workstation. The CPU time required varied 
between approximately 10 min for the (simple) geometry of 
Fig. 1, and a few hours for the more complex initial shapes. 

EXAMPLE 1. The first class of problems to be considered 
is the one where the bodies have a double symmetry, which 
is assumed to be taken with respect to the x- and y-axis. We 
put the reference point x’ at the centre of mass: the origin. 

First we consider a simple geometry as shown in Fig. 1, a 
square with the corners rounded off into a circle which was 
also considered by one of us [lo]. Here the curvature K 
varies only moderately; thus we do not meet the numerical 
problems as described in Section 4.2. When t = 1, it is easy 
to see that the rounded-off square is almost a circle. 

The collocation points for the first quadrant, derived with 
both linear and quadratic elements, are in Table II com- 
pared with the results derived by one of the authors [lo]. 
During the simulation a constant timestep At = 0.01 has 
been taken. A closer look at the points derived from both 
simulation methods reveals that the differences between the 
same material boundary points were of the order At. This is 
the best that can be expected, as mentioned in Section 4.2. 

EXAMPLE 2. The second example is the curve of Fig. 2, 
for which the curvature is varying much more wildly during 
the simulation. The results obtained at different time-steps 

I = O.O(O.25)l.O. are plotted in Fig. 3. 
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FIG. 2. The initial fluid region. 

In the boundary region near the y axis, large variations of 
the curvature occur. Here the collocation points will come 
very close to each other, and so we may lose accuracy when 
computing the curvature K at those points. This problem 
has been solved by monitoring the distance between two 
successive collocation points. In our numerical algorithm, 
this distance is kept larger than a prescribed minimum (of 
order d t). 

This example also shows that the present approach 
outperforms earlier work of one of the authors [9]. The 
boundary integral formulation in that paper was based on 
the stream and the vorticity functions. The consequence of 
that formulation was that the derivative of the curvature 
function K with respect to the arclength of the boundary was 
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FIG. 4. Two cylinders with different diameters (d2 = 2 * dl). 

FIG. 3. The transformation of this fluid region in time, which shows 
the large variation of the curvature of the outer boundary. The boundary 
curves refer to values of time t = O.O(O. 1)2.0. 

needed. This caused numerical instabilities, which led to a 
complete break-down of the algorithm, when the initial 
shapes showed a more extreme curvature like the curve of 
Fig. 2. 

EXAMPLE 3. Thus far we have only been dealing with 
problems with a double symmetry. Other interesting 
problems in viscous sintering are ones with only one axis of 
symmetry. In Fig. 4 the initial shape of two cylinders of 
arbitrary diameters has been plotted. Near the contact 
region of both cylinders we have to deal with a large varying 
curvature. Again, the centre of mass (which is lying some- 
where on the y axis) is taken as a reference point. The 
numerical results at different time-steps are shown in Fig. 5. 
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FIG. 5. The transformation of these cylinders in time. The boundary 
curves refer to values of time t = 0.0(0.1)2.0. 



62 VAN DE VOBST. MATTHEIJ, AND KUIKEN 

1 

3.5 

I 

0 

I.5 - 

i 
-1.5 -1 -0.5 0 0.5 I 1.5 

FIG. 6. Another example of a fluid with one axis of symmetry. The 
centre of mass of this shape lies outside the fluid region. 

EXAMPLE 4. Another example with one axis of sym- 
metry is given in Fig. 6. Here the curvature is varying 
moderately as the time increases. The problem in this exam- 
ple is that we cannot take the centre of mass as a reference 
point, because this point does not lie in the fluid. A natural 
choice for the reference point seems to be the middle of the 
cutoff of the symmetry (y) axis in the fluid region, because 
this point is going to be the midpoint, i.e., the centre of mass 
of the circle that will develop when the time is going to 
infinity. 

This choice gives a system of equations which appears to 
be a least-squares problem. This problem has been solved 
by a QU-decomposition method. The reason why we have 
to deal with a real least-square problem here is the fact that 
we are forcing the velocity to become equal to zero at the 
reference point; in reality, however, the velocity at this point 
is not equal to zero. The norm of the residual vector is of the 
order of the discretization error. 

The results obtained at different time steps are shown in 
Fig. 7. As can be observed, first the “mouth” of the shape 
opens wider, and after this the fluid region develops into a 
circle. This phenomenon also is noticeable during the move- 
ment of Example 2. 

The above examples are solved using numerical algo- 
rithms which are based on linear or quadratic boundary 
elements. Both algorithms worked well. However, it was 
observed that the algorithm based on constant elements, 
which are commonly used for solving this kind of problem 
(e.g., [3, 16]), was not stable. The physical law that the 
total surface of the body must be kept constant was not 
satisfied during the simulation, even for a simple geometry 
like the rounded-off square of Fig. 1. 

The reason for this was that the system of equations as 
derived after discretization had only two degrees of freedom. 

I I 
-1.5 -I -0.5 0 0.5 I 1.5 

FIG. 7. The transformation of these blobs in time. The boundary 
curves refer to values of time i = 0.0(0.1)2.0. 

This contradicts the results obtained in Section 3.1. There it 
was shown that the viscous sintering problem for an 
arbitrary region has three degrees of freedom. Thus, some- 
where in the discretization formulation, the rotation-free 
condition is lost. We think that is caused by the fact that, for 
a constant element formulation, the velocity v is constant on 
an element. Thus the velocity is discontinuous between two 
successive elements. With regards to a linear or quadratic 
element formulation, the degrees of freedom of movement 
for such an element is two: only a translation is possible. 
Therefore constant elements are not suitable for the 
problems we consider. 

It is interesting to note that most of the others papers 
dealing with such problems used constant elements, where, 
however, only double symmetry situations were considered. 
In solving the problem numerically, the symmetry was 
brought into the problem formulation, and the velocity v is 
computed on the symmetry part only. Thus, this symmetry 
requirement makes the problem uniquely solvable! 
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